top of page

Dr. Avital Rodal

Principal Investigator


Dr. Steven Del Signore

Research Scientist

I study the unique ways that neuronal synapses utilize the endocytic machinery. Despite decades of study, we still know very little about how synapses organize the proteins that control endocytosis in space and time. To answer this question, I perform live and super-resolution microscopy of the endocytic machinery at the fruit fly neuromuscular junction, and I develop new quantitative tools to analyze these data. To understand the mechanisms that control these proteins, I also study the interactions and activities of purified proteins and membranes in vitro. With these approaches, we are discovering that synapses control the endocytic machinery in ways that are quite distinct from non-neuronal cell types.


​Dr. Cassandra Blanchette

Research Scientist and Lab Manager

My research is focused on the trafficking of endosomally-derived extracellular vesicles and their cargoes within an intact nervous system, using the Drosophila neuromuscular junction as a model. Extracellular vesicles are small membrane-bound vesicles released by cells that can transport physiological cargoes between cells for communication, dispose of unwanted cellular materials, and even spread pathological components between cells in disease. I’m working to understand how in neurons endosomal cargoes get sorted for release in extracellular vesicles, and how released neuronal extracellular vesicles are targeted to and/or taken up by recipient cells to exert their physiological and pathological functions.

Erica picture.jpg

Dr. Erica Dresselhaus

Research Scientist

Exosomes are small extracellular vesicles released from the endosome system. Exosomes are involved in cell-to-cell communication and can also facilitate the spread of pathogenic proteins in neurodegenerative diseases.  It is not fully understood how exosomes are formed in neurons; thus, I am investigating neuronal endosome dynamics (such as maturation, fusion, and trafficking) and how these dynamics affect cargo function and exosome release from the neuron.  Using the Drosophila NMJ as my model system, I am using a variety of genetic manipulations and imaging techniques to investigate endosome dynamics and exosome release.


Dr. Mónica Quiñones-Frías

Postdoctoral Fellow

I’m interested in studying the role the ER has in regulating the biogenesis and trafficking of endosomes and extracellular vesicles at the Drosophila neuromuscular junction

blank profile.JPG

Valeriy Znakharchuk

Fly Kitchen Manager


Amy Scalera

Postdoctoral Fellow

I am interested in understanding how extracellular vesicles are regulated by canonical endocytic machinery. Specifically, I am interested in understanding how these proteins regulate whether certain cargoes get loaded into EVs and how they affect EV release either directly or indirectly. I use the Drosophila neuromuscular junction to answer these questions and am interested in moving to adult flies to further understand EV regulation

CV here

casual headshot.jpg

Anne Silveira

Graduate Student

Secondary mentor: Bruce Goode

Dynamin is a large GTPase best known for its role in clathrin mediated endocytosis; however, recent studies have shown that dynamin also binds and bundles actin filaments. Therefore, I am interested in studying how dynamin’s neuronal binding partners affect this actin bundling activity and how these dynamin-actin interactions affect endocytosis in neurons. To answer these questions, I perform in vitro actin-based assays along with in vivo live, single-molecule, and super-resolution microscopy at the Drosophila neuromuscular junction to quantify actin dynamics and endocytic protein organization. 


Emma McGuirk

Graduate Student

Primary mentor: Bruce Goode 

I am interested in studying actin cytoskeletal protein interactions and investigating the biochemical mechanisms that underlie branched actin network stabilization and turnover responsible for proper neuronal function at the Drosophila NMJ. Using genetics and live imaging, I will determine how the effects of actin branch network regulators, Cortactin and GMF, control actin cytoskeleton dynamics, membrane traffic, and synaptic remodeling.

Eric Gomez_edited_edited_edited.jpg

Eric Gomez

Graduate Student

Endocytic proteins accumulate in active zone adjacent regions called the periactive zone (PAZ). These proteins are responsible for a diverse range of functions that include synaptic vesicle cycling and trafficking of transmembrane proteins. Due to the complex morphology of neurons, I am interested in studying the functions of endocytic machinery in central synapses, specifically in small ventrolateral (s-LNv) neurons. Using this model in conjunction with a diverse tool set of genetic and microscopy techniques, I will determine how PAZ molecules contribute to cellular processes such as vesicle release and daily circadian remodeling in s-LNv neurons.

blank profile.JPG

Laura Westhoff

Graduate Student

Project description pending!

Undergraduate Researchers
Milena Manic.jpg



Dina Ocken_2022_edited_edited_edited.jpg



blank profile.JPG



blank profile.JPG



Former Lab Members


Lab Pets


Galen (the more mature Shepherd/Hound mix) and his younger, spunky sidekick Rylie (a fuzzy mutt) are a constant source of adorable lab hijinks. They are responsible for peanut butter cleanup, bone collecting, and just being cute.


Sadie is a young hound who is a new member of the family!

bottom of page